Admission-to-Candidacy Exam

Foundations of Computational Mathematics

August 10, 2016

Name:							
Show	v your work!	Write the	solution	of different	problems o	on separate pages.	Write

your initials and the number of the problem on the top right corner of each page.

Read carefully and sign the following statement:

I understand that it is the responsibility of every member of the Carolina community to uphold and maintain the University of South Carolina's Honor Code. As a Carolinian, I certify that I have neither given nor received unauthorized aid on this exam. I understand that, should it be determined that I used any unauthorized assistance or otherwise violate the University's Honor Code that I will receive a failing grade for this exam and be referred to the academic Dean and the Office of Academic Integrity for additional disciplinary action.

Signature:

- 1. A modification of the Newton's method for approximating the root ξ of the equation f(x) = 0 finds the next approximation x_{n+1} as the zero of the linear interpolation polynomial to f at the points x_n and x_n^* , where $x_n^* := x_n + |f(x_n)|$. Analyze the rate of convergence of this method and find conditions on f and the initial approximations x_0 and x_1 that guarantee the convergence.
- **2.** Given the values at the points x 2h, x h, x, x + h, x + 2h of the function g, derive **two** formulas approximating the second derivative g''(x) described by:
 - (a) has maximal degree of approximation assuming that g(x) is sufficiently smooth;
- (b) is based on least squares fitting by a second degree polynomial. Comment on the optimal choice of h in each case assuming that the error of calculating g is ε .
- **3.** Find the algebraic polynomials P_k of degrees k = 0, 1, 2, 3 that realize the best L_{∞} -approximation in the interval [-1, 1] to the function F(x) defined as $F(x) = x^2$ for $x \in [-1, 0]$ and $F(x) = x^2 x$ for $x \in [0, 1]$.
- **4.** Find the simple quadrature rule of highest degree of precision for estimating $\int_{-1}^{1} f(x)dx$ in terms of the values of f at -1/2, 0, and 1/2. Give a complete convergence analysis for the corresponding composite quadrature rule and comment on the effect of the calculation error assuming that the error of calculating f is ε .
- 5. Consider the matrix $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$.
 - (a) Determine SVD of A.
 - (b) Determine QR factorization of A.
- (c) What is the orthogonal projector P onto range(A), and what is the image under P of the vector (1,2,3)*?
- 6. Estimate the condition numbers of the problem of finding a unit vector $x \in \mathbb{C}^n$ such that the product Fx has the maximal possible ℓ_2 -norm for a given matrix $F \in \mathbb{C}^{m \times n}$. What is the condition number of the problem of finding the value of the maximal ℓ_2 -norm of the product of F with a unit vector?
- 7. Either propose a backward stable method or prove that no such method exist for the problem of finding $x \in \mathbb{C}^m$ that satisfies $A^2x = b$ for a given non-singular matrix $A \in \mathbb{C}^{m \times m}$ and a vector $b \in \mathbb{C}^m$.
- 8. A real symmetric $m \times m$ matrix A has eigenvalues $\lambda_1 \geq 8$ and $\lambda_2 \in (2,3)$ while all the other eigenvalues are much smaller: $|\lambda_j| \leq \frac{1}{8}$ for j = 3, 4, ..., m. Describe an iterative algorithm for finding λ_2 and the corresponding eigenvector v_2 . Give an estimate how much the approximations of λ_2 and v_2 improve after each iteration.